Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering
نویسندگان
چکیده
The role of transforming growth factor-β1 (TGF-β1) in normal human fracture healing has been previously demonstrated. The objective of the present study was to examine the biocompatibility of TGF-β1-silk fibroin-chitosan (TGF-β1-SF-CS) three-dimensional (3D) scaffolds in order to construct an ideal scaffold for bone tissue engineering. We added TGF-β1 directly to the SF-CS scaffold to construct a 3D scaffold for the first time, to the best of our knowledge, and performed evaluations to determine whether it may have potential applications as a growth factor delivery device. Bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on the TGF-β1-SF-CS scaffolds and the silk fibroin-chitosan (SF-CS) scaffolds. On the TGF-β1‑SF-CS and the SF-CS scaffolds, the cell adhesion rate increased in a time‑dependent manner. Using a Cell Counting Kit-8 (CCK-8) assay and analyzing the alkaline phosphatase (ALP) expression proved that TGF-β1 significantly enhanced the growth and proliferation of BMSCs on the SF-CS scaffolds in a time-dependent manner. To examine the in vivo biocompatibility and osteogenesis of the TGF-β1‑SF-CS scaffolds, the TGF-β1-SF-CS scaffolds and the SF-CS scaffolds were implanted in rabbit mandibles and studied histologically and microradiographically. The 3D computed tomography (CT) scan and histological examinations of the samples showed that the TGF-β1-SF-CS scaffolds exhibited good biocompatibility and extensive osteoconductivity with the host bone after 8 weeks. Moreover, the introduction of TGF-β1 to the SF-CS scaffolds markedly enhanced the efficiency of new bone formation, and this was confirmed using bone mineral density (BMD) and biomechanical evaluation, particularly at 8 weeks after implantation. We demonstrated that the TGF-β1‑SF-CS scaffolds possessed as good biocompatibility and osteogenesis as the hybrid ones. Taken together, these findings indicate that the TGF-β1-SF-CS scaffolds fulfilled the basic requirements of bone tissue engineering, and have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery. Thus, TGF-β1-SF-CS composite scaffolds represent a promising, novel type of scaffold for use in bone tissue engineering.
منابع مشابه
Cell Counting Kit-8 and ALP analyses revealed that TGF-β1 significantly promoted the growth and proliferation of the hFOB1.19 osteoblast cells in the SF-CS scaffolds, and the enhancement of osteoblast cell proliferation and activity
The aim of the present study was to examine the biocompatibility of transforming growth factor-β1-silk fibroin-chitosan (TGF-β1-SF-CS) scaffolds. In order to provide an ideal scaffold for use in bone tissue engineering, TGF-β1 was introduced into the SF-CS scaffold in order to reconstruct a three dimensional scaffold, following which hFOB1.19 osteoblast cells were seeded onto TGF-β1-SF-CS and S...
متن کاملMechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications
Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...
متن کاملSynthesis of Polyurethane/Hyaluronic acid/Royal Jelly Electrospun Scaffold and Evaluating its Properties for Wound Healing
Background and purpose: Studies showed that biocompatible and biodegradable materials in tissue engineering can be used to heal wounds. The aim of this study was to fabricate polyurethane/royal jelly/hyaluronic acid scaffold with suitable biological properties for wound healing using electrospinning method. Materials and methods: In this applied experimental study, to make a nanofiber scaffold...
متن کاملA novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application
Objective(s): Tissue engineering aims to achieve a tissue, which has highly interconnected porous microstructure concurrent with appropriate mechanical and biological properties. Materials and Methods: Therefore, the microstructure scaffolds are of great importance in this field. In the present study, an electroconductive poly-lactic acid (EC-PLA) filament used to fabricate a porous bone ...
متن کاملCytotoxicity and Genotoxicity Evaluation of Fluorapatite/bioactive Glass Nanocomposite Foams With Two Various Weight Ratios as Bone Tissue Scaffold: an in vitro study
The optimization of biomaterials’ biodegradation rate similar to tissue regeneration, is one of the main goals of tissue engineering. However, the necessity to assess their possible toxicity is always considered. The aim of this study was cytotoxicity and genotoxicity evaluation of fluorapatite/bioactive glass (FA/BG) nanocomposite foams with two various weight ratios to determine the optimal c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2016